Oxidation of Nickel(II) Cyclam and Tetraglycine Complexes by Dissolved Oxygen in the Presence of Sulfur(IV). Synergistic Effects of Manganese(III) and Cobalt(III) Helena Redigolo Pezza,^a Rodrigo Leandro Bonifácio and

J. Chem. Research (S), 1999, 347 J. Chem. Research (M), 1999, 1520–1541

Nina Coichev^{*b}

^a Universidade Estadual Paulista, Instituto de Química, Caixa Postal 355, CEP 14801-970, Araraquara, SP, Brazil ^b Universidade de São Paulo, Instituto de Química, Caixa Postal 26.077, CEP 05599-970, Sao Paulo, SP, Brazil

The autoxidation of $[Ni^{II}(cyclam)]^{2+}$ (cyclam = 1,4,8,11-tetraazacyclotetradecane) and Ni^{II} tetraglycine, accelerated by S^{IV}, is studied spectrophotometrically by following the formation of Ni^{III} complexes.

The autoxidation of Ni^{II}, accelerated by sulfur(IV) oxides, which undergoes simultaneous oxidation to SVI can be followed in the presence of a suitable aqueous medium.

Oxidation of [Ni^{II}(cyclam)]²⁺

The oxidation of [Ni^{II}(cyclam)]²⁺(cyclam=1,4,8,11tetraazacyclotetradecane), accelerated by sulfur dioxide, was studied spectrophotometrically by following the formation of [Ni^{III}(cyclam)]³⁺ under the conditions: $[Ni^{II}(cyclam)]^{2+} = 6.0 \times 10^{-3} \text{ mol } L^{-1}; \text{ initial } [Ni^{III}(cyclam)]^{3+}$ Co^{III}_{aq} or $Mn^{III}_{aq} = 10^{-6} \text{ mol } L^{-1}$; $[cyclam] = 6.0 \times 10^{-3} \text{ mol } L^{-1}$; $[SO_2] = (1.0-5.0) \times 10^{-4} \text{ mol } L^{-1}$ and $1.0 \text{ mol } L^{-1}$ perchloric acid in oxygen saturated solutions at 25 °C and ionic strength = 1.0 mol^{-1} . The oxidation reaction exhibits an autocatalytic behavior in which the induction period depends on the initial [Ni^{III}(cyclam)]³⁺, Co^{III}_{ad} and Mn^{III} aq concentration.

The pseudo-first-order rate constants, k_{obs} , were calculated from the absorbance-time traces, neglecting the induction period during the first few minutes. The k_{obs} values were reproducible and depend linearly on the initial SO₂ concentration.¹⁶ The catalytic activity is in the order $[Ni^{III}(cyclam)]^{3+} > Mn^{III}_{aq} > Co^{III}_{aq}$. The catalytic effect of the initial $[Ni^{III}(cyclam)]^{3+}$, Co^{III}_{aq}

and $Mn^{\rm III}_{\ aq}$ and the oxygen dependence show that the rate determining step is the generation of the SO3^{•-} radical due to the reduction of initial metal ion in oxidation state III, M^{III}, present at very low concentration [eqn. (1)].

presence of SO₂ and O₂ and synergistic effect of M^{III}. Main reactions:

Initiation in the presence of added $M^{III} = [Ni^{III}(cyclam)]^{3+}$, Co^{III} ag or Mn^{III} ag

$$\mathbf{M}^{\mathrm{III}} + \mathbf{SO}_2 + \mathbf{H}_2\mathbf{O} \to \mathbf{M}^{\mathrm{II}} + \mathbf{SO}_3^{\bullet -} + 2\mathbf{H}^+ \tag{1}$$

or some trace ion metal impurities such as Fe^{III}.

Autocatalysis:

$SO_3^{\bullet-} + O_2 \rightarrow SO_5^{\bullet-}$	$1.1 \times 10^9 \text{ mol}^{-1} \text{ s}^{-1} \text{ (ref.5)}$	(2)
---	---	-----

 $[Ni^{II}(cyclam)]^{2+} + SO_5^{\bullet-} + H^+ \rightarrow HSO_5^- + [Ni^{III}(cyclam)]^{3+}$ (3)

 $[\text{Ni}^{\text{II}}(\text{cyclam})]^{2+} + \text{HSO}_5^- \rightarrow [\text{Ni}^{\text{III}}(\text{cyclam})]^{3+} + \text{SO}_4^{2-} + \text{OH}^{\bullet}$ (4)

 $[Ni^{II}(cyclam)]^{2+} + HSO_5^- \rightarrow [Ni^{III}(cyclam)]^{3+} + SO_4^{\bullet-} + OH^-$ (5)

The chain propagation, the product formation and termination reactions are described in detail in references 12, 13 and 16.

Autoxidation of Ni¹¹tetraglycine

The Ni^{II} tetraglycine complex, $[Ni^{II}(H_{-3}G_4)]^{2-}$, reacts with oxygen with formation of $[Ni^{III}(H_{-3}G_4)]^-$ and ligand oxidation.²⁵ The activation effect of sulfite was also verified at pH = 9.2 in air saturated solutions.

The autocatalytic nature of $[Ni^{III}(H_{-3}G_4)]^-$ formation, in the absence of S^{IV}, can be concluded by the induction period, which increases with the tetraglycine concentration. In the presence of some initial $[Ni^{III}(H_{-3}G_4)]^-$ and SO_3^{2-} the formation of $SO_3^{\bullet-}$ occurs [similar to eqn. (1)], which reacts with O_2 producing $SO_5^{\bullet-}$ [eqn. (2)] which oxidizes $[Ni^{II}(H_{-3}G_4)]^{2-}$ [similar to eqn. (3)]. Although addition of trace concentrations of reducing

agents, which react with $[Ni^{III}(H_{-3}G_4)]^-$ peptide, lengthens the induction period, SO_3^{2-} accelerates the process owing to the formation of strong oxidant radicals (SO3^{•-} and **SO**₅^{•−}).

Technique used: UV-VIS spectroscopy

References: 39

Figures: 7

Received, 6th January 1999; Accepted, 3rd March 1999 Paper E/9/00182D

References cited in this synopsis

- 12 N. Coichev and R. van Eldik, Inorg. Chem., 1991, 30, 2375.
- N. Coichev and R. van Eldik, Inorg. Chim. Acta, 1991, 185, 13 69
- 16 H. R. Pezza and N. Coichev, J. Coord. Chem., 1999, 47, 107.
- 25 F. P. Bossu, E. B. Paniago, D. W. Margerum, S. T. Kirkey Jr, and J. L. Kurtz, Inorg. Chem., 1978, 17, 1034.

^{*}To receive any correspondence (*e-mail:* ncoichev@quim.iq.usp.br).